SNSでは書けない長めの話

WEBマーケティング、グロースハック、ときどきPRML

バスケット分析の難しさ

以前インターン先で、スーパーのPOSデータを使って併売実験を行ったのですが、バスケット分析で出した結果、あまりいい結果にならなかったので注意点というか、分析をする上で大事だと感じたことをメモります。

目次

ターゲット

分析に興味のあるかた、始めたばっかの方、lift値ってなんだっけ?という方

バスケット分析とは

バスケット分析とは一言でいうと、よく一緒に買われている商品の組み合わせをみつける分析手法です。
信頼度や支持度やリフト値など聞きなれない言葉が出てきますが、詳しくはこちらの記事と本を参照してください。とても細かく説明されていてとても参考にさせていただきました。
R本は特にRのコードが紹介されていて、パラメータのチューニングの際にとても参考になりました。
研究室でもこれを教科書として輪読しています。 商品分析の手法(ABC分析、アソシエーション分析)

Rによるデータサイエンス データ解析の基礎から最新手法まで

Rによるデータサイエンス データ解析の基礎から最新手法まで

リフト値ってなに?

バスケット分析で用いられるリフト値というのは、簡単に言うと、なにもしないより組み合わせて売ることがどのくらい効果があるのかを知る指標となります。
1以上の値であれば効果があると判断できます。
他にも支持度と確信度という指標があり、三つの指標を総合して判断していきます。

バスケット分析の注意点

バスケット分析で併売の効果があると判断できた組み合わせでも実際には併売の効果があまりないことがあります。

併売の向きが考慮されていない

AとBの商品を近くにおいて併売効果を高めようとしたときに、もともとAがあった場所の近くにBをおくのか、Bの近くにAを置くのでは効果が変わってきます。
例えば、チョコボールゴディバのチョコがよく買われているとします。
そのときゴディバのチョコをチョコボールが売っている駄菓子ゾーンの近くに置いて、はたして本当に売れるでしょうか?
どちらかというとゴディバのチョコが置いてある高級菓子ゾーンの近くにチョコボールを置いたほうが売れそうですよね。値段が異なる場合、併売の向きも考える必要があります。

商品カテゴリが離れすぎている

また、お肉と、洗剤がよく買われている組み合わせだとします。そこでお肉の売り場の近くに洗剤を置いたとします。結果はどうでしょうか?
あまり売れなそうですよね。逆も然りです。このようにいくらよく買われている組み合わせだとしても併売の効果が出にくいこともあるのです。

みんなに買われる商品が省かれていない

もうひとつは、よく売れすぎている商品は省いたほうがいいです。
例えば、もやしは、スーパーではよく売れる商品ひとつであり、単価も安いため、様々な商品と併売の組み合わせとして上位に入って来てしまいます。
ですが、併売商品が多すぎて、具体的なストーリーが描きにくいため、除いて考えたほうがいいことがあります。

因果関係と相関関係

上記のようにバスケット分析上では併売の効果が高いとされた商品でも実際には効果が出なかったというのは、まさしく相関関係でしかないからなんですね。
しかし、相関関係の中には因果関係がしっかりできているものもあるのでものは試しでいっぱい併売をやってみるというのも一つの手かもしれません。
分析手法はあくまで分析なので実践して効果測定まできちんと追っていくことが大切です。