読者です 読者をやめる 読者になる 読者になる

後楽園でマーケティングを研究する学生のブログ

マーケティング、KPI管理、グロースハック、ときどきPRML

PRML第1章と併せて読みたい記事まとめ

始めに

PRMLの第1章を読んでいて、内容が分からない部分を適宜、先人の記事を参考にさせていただいてました。

今から紹介する記事を併用して読み進めていけば、より理解が深まる記事にしていきたいと思います。

それに自分が復習するときにまた記事を調べなくていいですからね。

ターゲット

大学で統計学と確率の授業を履修していた人
機械学習って名前だけ流行してるけど実際何やってるのか気になる人
これから機械学習を使って何か作ってみたい人

1章 序論

P1 ルールと機械学習のアプローチの違いを理解する。

P2 教師あり学習と教師なし学習の違いをさらに理解する。

おまけ : p3 強化学習をもう少し勉強してみたい人へ ブロック崩しの動画とか有名です。

1.1 多項式曲線フィッティング

P9 正則化(正規化ではない)で出てくるノルム
{ \displaystyle
 \it ||\bf w  \it||^2 \equiv \bf{w}^{\it T}{\bf w} \it = w_0^{2} + w_1^{2} + \cdots + w_M^{2}
}
ノルム - Wikipedia

1.2 確率論

P14 ベイズの定理についてもう少し詳しく知る

1.2.4 ガウス分布

P25 2次のモーメントとは モーメント (確率論) - Wikipedia

期待値μは, 1次のモーメント { \displaystyle m_1} に等しい。分散 σ2 は、2次のモーメント m1, m2 で表すことができる。

1.2.5~1.2.6

こちらの記事がほとんど網羅しており、とても参考になりました。

1.3 モデル選択

確認用集合とテスト集合の違い

AICBICの違い

1.4 次元の呪い

次元の呪いは「サクサクメロンパン問題」とも言うようです。 高次元空間では体積は表面に集まると言われてもイメージがまるで湧きませんでしたが、これを読むとなんとか飲み込むことができました。

1.5 決定理論

決定理論の具体的な手法例 決定理論<決定理論とゲームの理論<オペレーションズ・リサーチ<Web教材<木暮仁

1.5.5 回帰のための損失関数

損失関数の種類 交差エントロピーと二乗誤差がよく使われるみたいですね。

1.6 情報理論

ラグランジュの未定乗数法
付録より分かりやすかったです。

カルバックライブラーダイバージェンス機械学習での意義

最後に

読み始める前のイメージよりPRMLは読みやすいなと思いました。多分1章だからだと思いますが。 2章はまた読み終わったらまとめます。